The pea SAD short-chain dehydrogenase/reductase: quinone reduction, tissue distribution, and heterologous expression.

نویسندگان

  • Nikolai Scherbak
  • Anneli Ala-Häivälä
  • Mikael Brosché
  • Nathalie Böwer
  • Hilja Strid
  • John R Gittins
  • Elin Grahn
  • Leif A Eriksson
  • Åke Strid
چکیده

The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterologous expression and biochemical characterization of an NAD(P)H:quinone oxidoreductase from the hemiparasitic plant Triphysaria versicolor

Quinones are widespread secondary metabolites that function as signal molecules between organisms in the rhizosphere. Quinones are particularly important in the exchange of chemical signals between plant roots, a phenomenon classically termed allelopathy. The bioactivity of quinones is due in large part to radical intermediates formed during redox cycling between quinone and hydroquinone states...

متن کامل

Participation of quinone and cytochrome b in tetrathionate reductase respiratory chain of Citrobacter freundii.

Formate dehydrogenase, NADH dehydrogenase, a quinone and a b-type cytochrome characterized by maxima at 429 and 560 nm are shown to participate in the tetrathionate redox chain of Citrobacter.

متن کامل

The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.

The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for ...

متن کامل

Cloning, expression, and molecular characterization of a small pea gene family regulated by low levels of ultraviolet B radiation and other stresses.

A pea (Pisum sativum) DNA fragment (termed MB3) was isolated by differential display of cDNAs obtained from total leaf RNA of ultraviolet B (UV-B) radiation-treated plants. Longer cDNAs were cloned by rapid amplification of cDNA ends in the 3' to 5' direction. Three different, but very similar, cDNAs were cloned, sadA, sadB, and sadC, the major difference between them being a 36-bp deletion in ...

متن کامل

Duroquinone reduction during passage through the pulmonary circulation.

The lungs can substantially influence the redox status of redox-active plasma constituents. Our objective was to examine aspects of the kinetics and mechanisms that determine pulmonary disposition of redox-active compounds during passage through the pulmonary circulation. Experiments were carried out on rat and mouse lungs with 2,3,5,6-tetramethyl-1,4-benzoquinone [duroquinone (DQ)] as a model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 155 4  شماره 

صفحات  -

تاریخ انتشار 2011